为创新服务,专业的新型储能信息平台!
当前位置:首页 > 行业资讯

液流电池新突破,实现在-20℃低温稳定运行100小时!

2024-04-06 19:44:38 来源:储能中国网

关键词:

储能新型储能

  据《中国科学报》报道,近日从中国科学院金属研究所(以下简称“金属所”)获悉,该所研究员李瑛和唐奡带领团队在新型低成本铁基液流电池储能技术研究领域取得新进展。相关研究成果近日分别发表于Chemical Engineering Journal和Small。

  金属所研究人员通过在电极界面进行金属刻蚀处理,有效调控了铁离子在电极界面的沉积反应成核特性,并利用理论计算和仿真分析揭示了铁离子在碳缺陷处的杂化作用增强机制及铁沉积过程演化规律。在此基础上组装的全铁液流电池实现了每平方厘米80毫瓦的功率密度和250圈循环99%的电流效率,循环稳定性有效提升了10倍。

  研究结果证明,电极界面优化设计可有效提升铁负极性能,为实现全铁液流电池高效稳定运行提供了新途径。此外,金属所研究人员通过在溶液中引入极性溶剂,首次实现了全电池在-20℃低温条件下稳定运行100小时,研究结果为宽温域全铁液流电池技术产业化开发与应用推广奠定了技术基础。

  原文如下:

  金属所新型低成本铁基液流电池技术研究获进展

  在新型储能技术路线中,以全钒液流电池为代表的液流电池储能技术本质安全、可灵活部署,成为长时储能技术的首选电化学储能技术路线。然而,受制于钒资源释放量,现阶段全钒液流电池产业化发展面临成本高这一问题。因此,研发低成本液流电池新体系新技术,是解决现阶段液流电池产业化发展瓶颈的途径。

  近期,中国科学院金属研究所腐蚀电化学课题组在新型低成本铁基液流电池储能技术研究领域取得进展。科研人员在前期全铁液流电池研究的基础上,以铁负极氧化还原反应可逆性为切入点,先后通过电极界面缺陷设计和极性溶剂调,实现了充放电过程中铁单质在电极纤维表面的均匀沉积和溶解,并进一步通过弱化水合氢键网络作用,实现了-20℃低温条件下电解液不凝固及电池稳定运行。

  全铁液流电池以低成本氯化亚铁作为活性物质,避免了正负极交叉污染。而受到铁负极Fe2+/Fe电化学反应可逆性差的制约,全铁液流电池的现有性能无法满足应用要求。为此,该工作在电极界面进行金属刻蚀处理,使得电极纤维表面富含缺陷结构,调控了Fe2+离子在电极界面的沉积反应成核特性,促进了铁沉积反应均一性及氧化还原反应动力学,并利用理论计算和仿真分析揭示了Fe2+在碳缺陷处的杂化作用增强机制及铁沉积过程演化规律。组装的全铁液流电池实现了80 mW cm-2的功率密度和250圈循环99%的电流效率,且循环稳定性有效提升了10倍。这证明了电极界面优化设计可有效提升铁负极性能,为实现全铁液流电池高效稳定运行提供了新途径。相关成果以Surface Engineered Carbon Felt toward Highly Reversible Fe Anode for All-Iron Flow Batteries为题,发表在Chemical Engineering Journal(2024, 487, 150592)上。

  电极设计策略提升了全铁液流电池的循环性能指标。而受到水系电解液0℃凝固的制约,全铁液流电池在高寒地区的低温运行难以实现。弱化水分子间相互作用、降低电解液凝固点,是解决上述问题的途径。科研人员在溶液中引入极性溶剂,利用极性分子与氢键相互作用,弱化了溶液的水合氢键网络,将电解液凝固点有效降低到-20℃以下,协同提升了铁负极电化学可逆性,实现了全电池在-20℃低温条件下100小时稳定运行。这为宽温域全铁液流电池技术产业化开发与应用推广奠定了技术基础。相关成果以A Universal Additive Design Strategy to Modulate Solvation Structure and Hydrogen Bond Network toward Highly Reversible Fe Anode for Low-Temperature All-Iron Flow Batteries为题,发表在Small(2024, 20, 2307354)上。

  电极制备机理与形貌表征

  相关示意图:(a)低温全铁液流电池功率密度与电压曲线;(b)低温电池循环与倍率性能

  来源:中国科学报、中国科学院金属研究所

储能中国网版权及免责声明:

1)储能中国网转载其他网站内容文字或图片,出于传递更多行业信息而非盈利之目的,同时本网站并不代表赞成其观点或证实其描述,内容仅供参考。版权归原网站、作者所有,若有侵权,请联系我们删除。

2)凡注明“来源-储能中国网” 的内容属储能中国网原创,转载需授权,转载应并注明“来源:储能中国网”。

关于我们 | 联系我们 | 宣传合作 | 人才招聘

本网站部分内容均由编辑从互联网收集整理,如果您发现不合适的内容,请联系我们进行处理,谢谢合作!

版权所有:储能中国网 备案信息:京ICP备2022014822号-1 投稿邮箱:cnnes2022@163.com

Copyright ©2010-2022 储能中国网 www.cnnes.cc

京公网安备 11010502049734号